
Exam of Decision Support Databases: Example 1

1. (5 points) (Mandatory) Let us consider the following database, without null val-
ues:

Products

PkP UnitPrice . . .

10 5 . . .
20 10 . . .
30 20 . . .

Sales

FkP Qty . . .

10 50 . . .
20 10 . . .
30 20 . . .
10 30 . . .
20 100 . . .
30 10 . . .
10 30 . . .

(a) Write an SQL query to find the total sales revenue by product.

(b) Give a logical query plan for the SQL query, the type and the value of the
result.
Modify the logical query plan to consider only products with UnitPrice > 5
sold each of them more than 5 times.

(c) Modify the SQL query to find also the rank of the product total quantity sold
(the highest is first)).

(d) Show the instance of an index on the attribute FkP.

(e) Show the instance of a Foreign Column Join Index on the attribute UnitPrice.

2. See lecture notes Exercise A.4: Inventory.

With respect to the above business scenario, answer the following questions:

(a) (8 points) Design a conceptual schema of a data mart to support at least the
examples of the business questions given. Specify the fact granularity, and for
each measure, if it is additive, semi-additive or non-additive.

(b) (5 points) Design the logical schema of the data mart, and write the SQL
queries for two business questions of your choice.

(c) (4 points) Give the physical query plan to execute a query of the previous
point using a foreign column join index among those needed to speed up the
query.

3. (3 points) Explain briefly the problem of materialized views selection, without
indexes. Let us consider the following lattice of possible candidate views to mate-
rialize. The numbers associated with the nodes represent the view size, measured
in terms of the number of tuples in the view. Select 2 views to materialize, differ-
ent from N1, with the greedy algorithm HRU.

1



N1 (100)

N2 (50)

N4 (20)

N7 (1)

N5 (30)

N8 (10)

N3 (75)

N6 (40)

4. Let us consider the logical schema of a data mart

Customer(PkCustPhoneNo, CustName, CustCity)
CallingPlans(PkPlanId, PlanName)
Calls(PkCustPhoneNo, FkPlanId, Day, Month, Year, Duration, Charge)

where PkPlanId e PlanName are two different keys, and the following query

Q: SELECT Year, PlanName, SUM(Charge) AS TC
FROM Calls, CallingPlans
WHERE FkPlanId = PkPlanId AND Year >= 2000 AND Year <=2005
GROUP BY Year, PlanName
HAVING SUM(Charge) > 1000;

(a) (3 points) Show if and how the GROUP BY can be brought forward on the
table Calls.

(b) (5 points) Show if and how the query can be rewritten using the materialized
view

V1: SELECT FkPlanId, Month, Year, SUM(Charge) AS C
FROM Calls
WHERE Year >= 2000
GROUP BY FkPlanId, Month, Year;

2



Exam of Decision Support Databases: Solution Exam-
ple 1 (Hints)

1. See lecture notes.
2. (a) Requirements specification and the conceptual design of a data mart for

the inventory. See lecture notes solution to Exercise A.4: Inventory.
(b) Logical design of the data mart and the SQL queries. See lecture notes

solution to Exercise A.4: Inventory.
(c) Physical query plan. See lecture notes.

3. See lecture notes for the problem of materialized view selection.

Application of the HRU algorithm:

First Choice Second Choice
N2 50× 5 = 250
N3 25× 5 = 125 25× 2 = 50
N4 80× 2 = 160 30× 2 = 60
N5 70× 3 = 210 20× 3 = 60
N6 60× 2 = 120 60+ 10 = 70
N7 99× 1 = 99 49× 1 = 49
N8 90× 1 = 90 40× 1 = 40

4. Let us consider the logical schema of a data mart, without null values:

Customer(PkCustPhoneNo, CustName, CustCity)
CallingPlans(PkPlanId, PlanName)
Calls(PkCustPhoneNo, FkPlanId, Day, Month, Year, Duration, Charge)

where PkPlanId and PlanName are two different keys, and the following query

Q: SELECT Year, PlanName, SUM(Charge) AS TC
FROM Calls, CallingPlans
WHERE FkPlanId = PkPlanId AND Year >= 2000 AND Year <=2005
GROUP BY Year, PlanName
HAVING SUM(Charge) > 1000;

(a) Show if and how the GROUP BY can be brought forward on the table Calls.

3



σ TC > 1000

Year, PlanNameγ SUM(Charge) AS TC

σ Year >= 2000 AND Year <= 2005

./
FkPlanId = PkPlanId

Calls CallingPlans

Figure 1: Logical query plan new

The selection on Year can be pushed on Calls below the join.
The group-by can be pushed on Calls below the join because the invariant
grouping property holds: the aggregate function SUM(Charge) uses an attribute
from Calls, and (Year, PlanName → FkPlanId) because

(Year, PlanName)+ = {Year, PlanName, PkPlanId, FkPlanId}

πb
Year, PlanName, TC

σ TC > 1000

./
FkPlanId = PkPlanId

Year, FkPlanIdγ SUM(Charge) AS TC

σ Year >= 2000 AND Year <= 2005

Calls

CallingPlans

Figure 2: Logical query plan with the group-by pushed below the join

4



(b) Show if and how the query can be rewritten using the materialized view

V1: SELECT FkPlanId, Month, Year, SUM(Charge) AS C
FROM Calls
WHERE Year >= 2000
GROUP BY FkPlanId, Month, Year;

FkPlanId, Month, Yearγ SUM(Charge) AS C

σ Year >= 2000

Calls

Figure 3: Logical view plan

Let us use the approach with a transformation of the logical query plan in
Figure 2, which can be rewritten as follows with a subtree identical to V :

πb
Year, PlanName, TC

σTC > 1000

./
FkPlanId = PkPlanId

Year, FkPlanIdγ SUM(C) AS TC

σYear <= 2005

Month, Year, FkPlanIdγ SUM(Charge) AS C

σYear >= 2000

Calls

CallingPlans

Figure 4: Logical query plan with the logical view subplan

5



The logical query plan with the logical view subplan is then rewritten as fol-
lows to translate it in SQL. With the rewriting of the group-by over the join,
the attribute PlanName of CallingPlans, used by the projection, can be added to
grouping attributes because (FkPlanId = PkPlanId) and PkPlanId → PlanName.

πb
Year, PlanName, TC

σ TC > 1000

Year, FkPlanId, PlanNameγ SUM(C) AS TC

σ Year <= 2005

./
FkPlanId = PkPlanId

Month, Year, FkPlanIdγ SUM(Charge) AS C

σ Year >= 2000

Calls

CallingPlans

Figure 5: Final version of the logical query plan with the logical view subplan

So the rewriting of Q succeeds:

Q1”: SELECT Year, PlanName, SUM(C) AS TC
FROM V1, CallingPlans
WHERE FkPlanId = PkPlanId AND Year <=2005
GROUP BY Year, FkPlanId, PlanName
HAVING SUM(C) > 1000;

6



Exam of Decision Support Databases: Example 2

1. (5 points) (Mandatory) Let us consider the following database, without null val-
ues (F(Fk :int, B : int, C :int) and D(Pk :int, E :string)) and the query:

SELECT Fk, COUNT(∗) AS Cn
FROM F, D
WHERE Fk = Pk AND E <> ’d3’
GROUP BY Fk
HAVING SUM(C) < 100;

D

Pk E

1 d1
2 d2
3 d3

F

Fk B C

1 10 60
1 20 20
2 30 80
2 20 25
3 30 80

(a) Give a logical query plan for the SQL query, the type and the value of the
result.

(b) Modify the SQL query to find also the rank of the product total quantity sold
(the highest is first)).

(c) Show the instance of an index on the attribute Fk.

(d) Show the instance of a Foreign Column Join Index on the attribute E.

(e) Explain the meaning of a “semi-additive” measure. Let F(FkD1, FkD2, M) be a
table with the “semi-additive” measure M with respect to the dimension D1.
Give a correct and a wrong query on the schema with the aggregation SUM(M).

2. See lecture notes Exercise A.5: Hotels.

With respect to the above business scenario, answer the following questions:

(a) (8 points) Give a conceptual data mart design to support at least the examples
of the business questions given. Specify the fact granularity, and for each
measure, if it is additive, semi-additive or non-additive.

(b) (5 points) Give a logical data mart design, and write the SQL queries for the
analysis (1) and (4);

(c) (4 points) Give the physical query plan to execute the first query of the previ-
ous point using (a) the physical operator HashGroupby for the grouping oper-
ator, and (b) a foreign column join index among those needed to speed up the
query. Give a brief description of a bitmapped foreign column join index.

(d) (1 point) Give a brief description of the TableAccess operator.

3. (2 points) Give the lattice of possible candidate views to materialize for the con-
ceptual design in the following figure with dimensions A(b), C(d). Explain how the
benefit of a view is computed with the greedy algorithm HRU.

F

M
A

bCd

7



4. Let us consider the database without null values:

Customer(PKCustomer, CName, CCity)
Order(PKOrder, FKCustomer, ODate)
Product(PKProduct, PName, PCost)
OrderLine(LineNo, FKOrder, FKProduct, Quantity, ExtendedPrice, Discount, Revenue)

and the query

Q: SELECT CCity, AVG(Revenue) AS avgR
FROM OrderLine, Order, Customer
WHERE FKOrder = PKOrder AND FKCustomer = PKCustomer
GROUP BY CCity, FKCustomer
HAVING SUM(Revenue) > 1000;

(a) (2 points) Show if and how the GROUP BY can be pushed on the join
(OrderLine ./

FKOrder = PKOrder Order).
(b) (2 points) Show if and how the GROUP BY can be pushed on the relation

OrderLine.
(c) (4 points) Show if and how the query Q can be rewritten using the materialized

view V

V: SELECT FKCustomer, SUM(Revenue) AS TR, COUNT(*) AS Cnt
FROM OrderLine, Order
WHERE FKOrder = PKOrder
GROUP BY FKCustomer;

8



Exam of Decision Support Databases: Solution Exam-
ple 2 (Hints)

1. See lecture notes.
2. (a) Requirements specification and the conceptual design of a data mart for

hotel room type utilization. See lecture notes solution to Exercise A.5: Ho-
tels.

(b) Logical design of the data mart and the SQL queries. See lecture notes
solution to Exercise A.5: Hotels.

(c) Physical query plan for the query

SELECT H.Name
, SUM(F.NOccupiedRooms) / (SUM(F.NOccupiedRooms) +

SUM(F.NVacantRooms) +
SUM(F.NUnavailableRooms) )

AS OccupancyRate
FROM RoomTypeUtilization F, Hotel H
WHERE F.HotelFK = H.HotelPK AND F.DateFK = 20100717

AND H.City = ’Florence’
GROUP BY F.HotelFK, H.Name;

Let us assume that there is (a) a bitmap index on the fact table attribute DateFK,
(b) a bitmapped foreign column join index on the Hotel dimensional attribute
City, and (c) an index on the primary key of the dimensional tables.
Let us use the following abbreviations:
– F for RoomTypeUtilization.
– NOR for NOccupiedRooms.
– NVR for NVacantRooms.
– NUR for NUnavailableRooms.
– OR for OccupancyRate.
The physical query plan for the first data analysis is

Project
({Name,SUM(NOR)/(SUM(NOR)+SUM(NVR)+SUM(NUR))ASOR})

HashGroupBy
({HotelFK, Name}, {SUM(NOR), SUM(NVR), SUM(NUR)})

IndexNestedLoop
(HotelFK=HotelPK)

TableAccess
(F)

RIDFromBM

BMAnd

BMFCJIndexFilter
(IdxHF, City = ‘Florence’)

BMIndexFilter
(IdxDF, DateFK = 20100717 )

IndexFilter
(Hotel, IdxPkH, HotelPK=HotelFK)

9



(d) See lecture notes.

3. See lecture notes.

4. Let us consider the logical schema of a data mart, without null values:

Customer(PKCustomer, CName, CCity)
Order(PKOrder, FKCustomer, ODate)
Product(PKProduct, PName, PCost)
OrderLine(LineNo, FKOrder, FKProduct, Quantity, ExtendedPrice, Discount, Revenue)

and the query

Q: SELECT CCity, AVG(Revenue) AS avgR
FROM OrderLine, Order, Customer
WHERE FKOrder = PKOrder AND FKCustomer = PKCustomer
GROUP BY CCity, FKCustomer
HAVING SUM(Revenue) > 1000;

(a) Show if and how the GROUP BY can be pushed on the join
(OrderLine ./

FKOrder = PKOrder Order).

πb
CCity, avgR

σ SR > 1000

CCity, FKCustomerγ SUM(Revenue) AS SR, AVG(Revenue) AS avgR

./
FKCustomer = PKCustomer

./
FKOrder = PKOrder

OrderLine Order

Customer

Figure 6: Logical query plan

The group-by can be pushed on the join (OrderLine ./
FKOrder = PKOrder Order) be-

cause the invariant grouping property holds: the aggregate functions use an
attribute from the join result, and (CCity, FKCustomer → FKCustomer).

10



πb
CCity, avgR

σ SR > 1000

./
FKCustomer = PKCustomer

FKCustomerγ SUM(Revenue) AS SR
, AVG(Revenue) AS avgR

./
FKOrder = PKOrder

OrderLine Order

Customer

Figure 7: Logical query plan: the GROUP BY is pushed below the first join with the
invariant grouping

(b) Show if and how the GROUP BY can be pushed on the relation OrderLine.

OrderLine does not have the invariant grouping property because Condition 1
does not hold: FKCustomer 6→ FKOrder. The double grouping can be applied,
with the rewriting of the not decomposable aggregation function AVG(Revenue)
as SUM(Revenue) / COUNT(Revenue), equivalent to SUM(Revenue) / COUNT(∗)
because the data mart is without null values.

πb
CCity, SR/C AS avgR

σ SR > 1000

./
FKCustomer = PKCustomer

FKCustomerγ SUM(SR) AS SR
, SUM(C) AS C

FKOrder
, FKCustomer

γ SUM(Revenue) AS SR
, COUNT(∗) AS C

./
FKOrder = PKOrder

OrderLine Order

Customer

Figure 8: Logical query plan: the GROUP BY is rewritten with the double grouping
and the rewriting of AVG

11



πb
CCity, SR/C AS avgR

σ SR > 1000

./
FKCustomer = PKCustomer

FKCustomerγ SUM(SR) AS SR
, SUM(C) AS C

./
FKOrder = PKOrder

FKOrderγ SUM(Revenue) AS SR
, COUNT(∗) AS C

OrderLine

Order

Customer

Figure 9: Logical query plan: the second GROUP BY is pushed below the second join
with the invariant grouping

(c) Show if and how the query Q can be rewritten using the materialized view V

Q: SELECT CCity, AVG(Revenue) AS avgR
FROM OrderLine, Order, Customer
WHERE FKOrder = PKOrder AND FKCustomer = PKCustomer
GROUP BY CCity, FKCustomer
HAVING SUM(Revenue) > 1000;

V: SELECT FKCustomer, SUM(Revenue) AS TR, COUNT(∗) AS Cnt
FROM OrderLine, Order
WHERE FKOrder = PKOrder
GROUP BY FKCustomer;

Let us use the approach with a compensation on the view.

Since the approach requires that the SELECT and HAVING clauses may contain
only the aggregate functions MIN, MAX, SUM and COUNT, the AVG function in
Q is rewritten to compute it from given values for SUM and COUNT.

12



πb
CCity, SR/C AS avgR

σ SR > 1000

CCity
, FKCustomer

γ SUM(Revenue) AS SR
, COUNT(∗) AS C

./
FKCustomer = PKCustomer

./
FKOrder = PKOrder

OrderLine Order

Customer

(a) AQ

FKCustomerγ SUM(Revenue) AS TR
, COUNT(∗) AS Cnt

./
FKOrder = PKOrder

OrderLine Order

(b) AV

Figure 10: Query and view logical query plans

The join operations do not match. Therefore, a compensation is added as
shown in the figure:

πb
CCity, SR/C AS avgR

σ SR > 1000

CCity
, FKCustomer

γ SUM(Revenue) AS SR
, COUNT(∗) AS C

./
FKCustomer = PKCustomer

./
FKOrder = PKOrder

OrderLine Order

Customer

(a) AQ

./
PKCustomer = FKCustomer

Customer

FKCustomerγ SUM(Revenue) AS TR
, COUNT(∗) AS Cnt

./
FKOrder = PKOrder

OrderLine Order

(b) AV

Figure 11: Join compensation

13



To match the groupings, the compensation on the operand of γV floats, and
since g(Q) → g(V ) ∧ g(V ) → g(Q), the rewriting does not require a
grouping compensation, but an aggregate compensation only with a project,
as shown in the figure:

πb
CCity, SR/C AS avgR

σ SR > 1000

CCity
, FKCustomer

γ SUM(Revenue) AS SR
, COUNT(∗) AS C

./
FKCustomer = PKCustomer

./
FKOrder = PKOrder

OrderLine Order

Customer

(a) AQ

πb
CCity, FKCustomer, TR AS SR, Cnt AS C

./
PKCustomer = FKCustomer

Customer

FKCustomerγ SUM(Revenue) AS TR
, COUNT(∗) AS Cnt

./
FKOrder = PKOrder

OrderLine Order

(b) AV

Figure 12: The float of the join compensation and the groupings compensation

The other compensations required for the σ and πb in Q are shown in the
figure:

πb
CCity, SR/C AS avgR

σ SR > 1000

CCity
, FKCustomer

γ SUM(Revenue) AS SR
, COUNT(∗) AS C

./
FKCustomer = PKCustomer

./
FKOrder = PKOrder

OrderLine Order

Customer

(a) AQ

πb
CCity, SR/C AS avgR

σ SR > 1000

πb
CCity, FKCustomer, TR AS SR, Cnt AS C

./
PKCustomer = FKCustomer

Customer

FKCustomerγ SUM(Revenue) AS TR
, COUNT(∗) AS Cnt

./
FKOrder = PKOrder

OrderLine Order

(b) AV

Figure 13: Other compensations

Since the internal πb of the compensation is useless, the final solution is the
following:

14



πb
CCity, SR/C AS avgR

σ SR > 1000

CCity
, FKCustomer

γ SUM(Revenue) AS SR
, COUNT(∗) AS C

./
FKCustomer = PKCustomer

./
FKOrder = PKOrder

OrderLine Order

Customer

(a) AQ

πb
CCity, TR/Cnt AS avgR

σ TR > 1000

./
PKCustomer = FKCustomer

Customer

FKCustomerγ SUM(Revenue) AS TR
, COUNT(∗) AS Cnt

./
FKOrder = PKOrder

OrderLine Order

(b) AV

Figure 14: Final solution

Rewriting of Q:

QR: SELECT CCity, TR/Cnt AS avgR
FROM V, Customer
WHERE FKCustomer = PKCustomer AND TR > 1000;

15



Let us use the approach with a transformation of the logical query plan.

The rewriting of Q with the γ pushed below the first join

(OrderLine ./
FKOrder = PKOrder Order)

produces a logical tree that, with the rewriting of AVG and the changing of SR
and C in the γ with TR and Cnt, has as subtree the tree of the view.

πb
CCity, TR/Cnt AS avgR

σSR > 1000

./
FKCustomer = PKCustomer

FKCustomerγ SUM(Revenue) AS TR
, COUNT(∗) AS Cnt

./
FKOrder = PKOrder

OrderLine Order

Customer

Figure 15: The rewriting of Q to have V as a subtree

Rewriting of Q:

QR: SELECT CCity, TR/Cnt AS avgR
FROM V, Customer
WHERE FKCustomer = PKCustomer AND TR > 1000;

16


